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Abstract: Cyclization experiments of the tempiated bisacetylenes ia, ib and ic have demonstrated that the
appearance of higher oligomers was not due to a catenation process, but rather due to the restricted mobility of the

intermediate after the first Glaser coupling. It is demonbtmtcd that the geometrical restrictions of the template prevent
a fast intramolecular cyclization. © 1998 Elsevier Science Ltd. All rights reserved.

The template directed synthesis of cyclic structures is a well known procedure to improve moderate yield and
to simplify the product Duriﬁcation.l Although early work of the formation of templates started several decades
ago, and has been extensively used in both organic and inorganic chemistry, their use in the synthesis of

nanometer scale molecular obiects is rather limited. y W norted that the conner catalvead temnlate
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Scheme 1

Herein we propose two possible pathways for the formation of the higher oligomers and evaluate their
contribution to this process. Based on the assumption that the cyclization of the two bisacetylenes is a stepwise
process (scheme 2), the formation of the macrocycle (path b) occurs via the intermediate “A*. However, steric
restrictions, due to the template, may slow down the intramolecular cyclization and therefore enlarge the
concentration of A in the reaction mixture allowing it to oligomerize to “O* via another molecule of A and/or
additional starting material (path a) (only the dimer of A is shown). Using this proposed scheme, any change in
the length of the spacer should affect the yield of the cyclic dimer “M* (path a). On the other hand,
solvatophobic interactions may induce a catenation of M by A, or by starting material. In this case, any change in
the volume of the torus of the rings should affect the product distribution.
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Scheme 2 Figure 1
The oxidative coupling of the temnlate bound tetraacetvienes 1a-¢ was nerformed in ovridine via the addition
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the product distribution of the crude products of the reaction as determined by gel permeation chromatography
SO S e P by s Ty M /T AAa. o LN nmnd AL /T .
(Urv ). LOImparisoil O1 ing Crude producis o1 1a (K = Vi€, n = 0) ana 1o (K = -Bu;n= D) Clearly shows that the
size of the torus of the macrocycles has, within the experimental error, only a negligible influence on the product
distribution. On the other hand, if the length of the template is changed, as the comparison of the GPC diagrams

of 1lb (R = t—Bu; n = 6) and 1¢ (R = -Bu; n = 1) illustrates, the yield of the cyclic dimer drops from 86-88 % to
about 70 %. This clearly indicates that catenation is not the predominant process which is responsible for a non
quantitative yield of M in these reactions. It is more likely, assuming a stepwise cyclization, that the
intramolecular Glaser coupling of the intermediate A is slowed down as the length of the template is reduced. It
is interesting to note, that we have here the first indications that the cyclizations of these templated acetylenes
behave analogous to the formation of low molecular weight ansa hydroquinone polymethylene ethers.® The shape
of the product profile of these structures, with dimensions in the nanometer region, is therefore caused by the
direction of the attachment of the bisacetylene to the template as well as the size of the template. Further
investigations concerning the template length should demonstrate if this effect tends to vanish when the length of

the spacer is increased.
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